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Cluster dynamical mean-field and maximum entropy analytical continuation methods are used to obtain
theoretical estimates for the many-body density of states, electron self-energy, in-plane and c-axis optical
conductivity and the B1g and B2g Raman-scattering spectra of the two-dimensional square lattice Hubbard
model at intermediate interaction strengths and carrier concentrations near half filling. The calculations are
based on an eight-site cluster approximation which gives access to both the zone-diagonal and zone-face
portions of the Fermi surface. At low dopings, the zone-face regions exhibit a “pseudogap,” a suppression of
the many-body density of states for energies near the Fermi surface. The pseudogap magnitude is largest near
half filling and decreases smoothly with doping but as temperature is increased, the gap fills in rather than
closes. The calculated response functions bear a strong qualitative resemblance to data taken in the pseudogap
regime of high-Tc cuprates, strongly suggesting that the intermediate coupling Hubbard model accounts for
much of the exotic behavior observed in high-Tc materials.
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I. INTRODUCTION

The “pseudogap,” a temperature- and carrier-
concentration-dependent suppression of the many-body den-
sity of states of hole-doped high-temperature copper-oxide
superconductors which is visible at temperatures well above
the superconducting transition temperature, is one of the en-
during mysteries of the field. The pseudogap was first in-
ferred from measurements of spin-lattice relaxation times1

and Knight shifts;2 additional evidence rapidly accumulated
from measurements of in-plane resistivity,3 photoemission
spectra,4,5 the interplane �c-axis� conductivity,6,7 Raman
scattering,8,9 and tunneling10 and measurements of the elec-
tronic density of states. On the other hand, the pseudogap
does not lead to a significant suppression of low-frequency
spectral weight in the in-plane conductivity,11 although struc-
ture in the conductivity and in scattering rates inferred from
the conductivity has been attributed to the pseudogap.12 The
gap is most pronounced at low temperatures and low dop-
ings. The data suggest that the gap magnitude decreases as
doping increases whereas with increasing temperature, the
gap magnitude does not decrease. Rather, the gap “fills in” as
more and more states appear in the midgap region.

Photoemission measurements4,5,13 indicate that the
pseudogap is largest near the zone corner �0,�� / �� ,0� re-
gions and vanishes at the zone-diagonal ��� /2, �� /2� re-
gions. This momentum-space structure of the pseudogap is
one aspect of the more general phenomenon of momentum-
space differentiation that characterizes the doping-dependent
metal-insulator transition in the high-Tc materials.

Schmalian et al.14 argued that one should distinguish be-
tween a “weak” and “strong” pseudogap. The weak
pseudogap terminology refers to relatively low-energy phe-
nomena affecting states within a few tens of millielectron
volt of the Fermi surface while the “strong pseudogap” is a
suppression of density of states which may exist over a rela-
tively wide energy range.

The physical interpretation of the pseudogap remains con-
troversial. One possibility is that it is associated with an ac-

tual thermodynamic transition to a phase with a definite
long-ranged order. Possibilities which have been proposed
include magnetic order, perhaps of “stripe” or “nematic”
density wave form15 and an orbital current phase.16 Experi-
mental evidence has appeared supporting each of these
possibilities17,18 but the interpretations remain
controversial.19

An alternative possibility is that the pseudogap is a con-
sequence of long but not infinite ranged order of spin-density
wave,14,20–22 superconducting23,24 or resonating valence bond
type.25–27 One loop28 and more sophisticated14,21,22 cal-
culations provide a relation between quasilong-ranged
order and pseudogaps while slave-boson-based mean-field
methods25–27 provide a different mechanism for �pseudo�gap
formation. However, these methods are based on uncon-
trolled analytical approximations. Models of quasi-one-
dimensional “ladder” compounds can be studied in a con-
trolled manner and are known to exhibit gapped phases with
no long-ranged order,29 however despite intriguing qualita-
tive similarities the relation of ladder calculations to the two-
dimensional physics relevant to the cuprates remains unclear.
There is a clear need for studies based on methods which are
applicable in two dimensions and at intermediate to strong
couplings and which are not based on a particular assump-
tion about the type of relevant correlations.

One such approach is provided by “cluster” dynamical
mean-field methods.30 These techniques are based on a
coarse discretization of the momentum dependence of the
electron self-energy but permit a numerically unbiased solu-
tion of the resulting model. Important early work showed
that the cluster dynamical mean-field approximation pro-
duced features reminiscent of the pseudogap including sup-
pression of the density of states in the �0,�� region of the
zone31 and “Fermi arcs” which are at least qualitatively con-
sistent with photoemission experiments.32–35 Subsequently
many cluster dynamical mean-field theory �DMFT� studies
of the pseudogap have appeared.36–47

Studies to date are mainly of two sorts: large-cluster stud-
ies of one doping and temperature and more comprehensive
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studies of smaller �two- and four-site� clusters. An important
large-cluster study is the work of Macridin et al.,36 which
considered a 16-site cluster at U=8t at a doping of 5% and
an inverse temperature �=8 / t and showed from analytical
continuation of the electron spectral function that a �0,��
pseudogap existed at this doping. The smaller-cluster studies
have been based on two- and four-site clusters for which
the computational burden is much less, permitting systematic
examinations of a wider range of parameter
space.33,34,37,39–41,43–47 However these smaller clusters do not
allow direct comparison of zone-diagonal and zone-face re-
gions of momentum space. In addition, many of the more
systematic small-cluster-based analyses employed interpola-
tion schemes to construct a representation of the electron
self-energy throughout the Brillouin zone. The reconstruc-
tions are based on data corresponding to the �0,0�, �� ,��
and, for the four-site clusters, �0,�� / �� ,0� momentum
points33–35 and the physical interpretation is problematic es-
pecially because information related to the physically impor-
tant ��� /2, �� /2� momentum-space regions is inferred
from measurements at �0,0�, �� ,��, and �0,�� / �� ,0� where
the physics is presumably different. However, an interesting
recent paper by Ferrero et al.42,48 introduced a two-site clus-
ter with a new momentum-space partitioning which clearly
separated nodal and antinodal regions.

The work reported here builds on recent studies of the
eight-site cluster49,50 shown in Fig. 1. The larger size of this
cluster provides a more refined momentum resolution and, in
particular, gives independent access to the zone-face and
zone-diagonal regions of the Fermi surface. However the
size is small enough that studies of wide regions of param-
eter space are computationally feasible. Previous work has
revealed that the doping-driven Mott transition is
momentum-space selective, with a gap opening first in the
zone corner �0,�� / �� ,0� regions of the Brillouin zone while
the zone-diagonal ��� /2, �� /2� regions remain ungapped
until the carrier concentration reaches half filling. The previ-
ous work focused on quantities defined directly on the Mat-
subara axis. In this paper, we use analytical continuation
techniques to examine the consequences of the momentum-
space-selective transitions for observables including the elec-

tron spectral function and self-energy, the interplane and in-
plane conductivity, and the Raman-scattering intensity. Our
results strongly suggest that even in the absence of long-
ranged or quasilong-ranged order, the Hubbard model at in-
termediate couplings contains the essential physics of the
strong pseudogap.

The rest of this paper is organized as follows. In Sec. II,
we present the model and the dynamical mean-field and ana-
lytical continuation methods we use to solve it. In Sect. III,
we show results for the electron spectral function and in Sec.
IV the interplane conductivity. Section V presents our results
for the Raman-scattering intensity and Sec. VI the in-plane
conductivity. Section VII shows the electron self-energy in
the different momentum sectors, confirming the conjecture
that the gap arises from an orbitally selective Mott transition
and demonstrating that the model reproduces key aspects of
the momentum selectivity in the approach to the Mott tran-
sition. Section VIII is a summary and conclusion.

II. MODEL AND METHODS

We study the Hubbard model on a two-dimensional lat-
tice. The model is conveniently written in a mixed
momentum-space/position-space representation as

H = �
k�

�kck�
† ck� + U�

i

ni↑ni↓ − ��
i�

ni�. �1�

We take, as a reasonable representation of the band structure
of high-temperature superconductors,

�k = − 2t�cos kx + cos ky� − 4t� cos kx cos ky �2�

with t�=−0.15t. For comparison to data we note that a value
generally accepted for high-Tc superconductors is t
�0.35 eV �Ref. 51� while values of t� / t from −0.05 to −0.3
have been reported for different materials.

To solve the model we use the “dynamical cluster ap-
proximation” �DCA�.30,52 The method is based on tiling the
Brillouin zone into N equal-area nonoverlapping tiles and
approximating the electron self-energy 	�k ,
� as a piece-
wise constant function which may take different values in the
different tiles. Labeling the tiles by center momentum K we
have

	�k,
� = 	K�
�; k � K . �3�

The results we present were obtained using the eight-site
momentum-space partitioning shown in Fig. 1 and the
“continuous-time auxiliary field” numerical method53 as dis-
cussed in more detail in Ref. 49 and 50. Because the model
is solved on the imaginary axis, an analytical continuation
procedure is required to obtain real frequency information.
Following Ref. 54 we continue the electron self-energies us-
ing the maximum entropy technique55 and the “L-curve”
method.56 The covariance matrix of the self-energies is ap-
proximately diagonal and the continuation of the obtained
real frequency spectra back to the imaginary axis is in good
agreement with the original data. Although uncertainties ex-
ist in the analytical continuation, our experience is that the
near Fermi-surface structures are reliable.

FIG. 1. �Color online� Brillouin-zone partitioning associated
with the eight-site cluster.
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The eight-site computation suffers from a fermionic sign
problem which becomes worse with decreasing temperature
and increasing doping and interaction strength. The need to
scan a range of dopings and to obtain data of the precision
required for reliable analytical continuations limited us to
temperatures �t /20 �corresponding roughly to 200 K for t
=0.35 eV� and U=7t. The U value is smaller than the values
U�9t believed57 to describe high-temperature superconduct-
ors but is large enough that �within the approximation we
use� the half filled state is a Mott insulator and hole doping
leads to a momentum-space-selective Mott transition.

Dynamical mean-field methods involve a drastic simplifi-
cation of the momentum dependence of the electron self-
energy. As Eq. �3� shows the DCA method produces a piece-
wise constant self-energy which may be viewed as a
discretization of the continuous momentum dependence of
the exact solution. In many previous dynamical mean-field
studies of the pseudogap, an interpolation process33,35 was
used to construct a self-energy with a continuous momentum
dependence, which was then used to produce figures to be
compared to experiment. We prefer to avoid interpolations
and instead work with analytical continuations of directly
calculated quantities. We present results for �1� sector-
averaged electron spectral function,

AK�
� = −
Nc

�
�

K

d2k

�2��2 Im� 1


 − �k + � − 	K�
�� �4�

with Nc=8 in our eight-site cluster.
�2� Interplane or c-axis conductivity,

�c��� = 2�
K
�

K

d2k

�2��2� d


�

f�
� − f�
 + ��
�

 t��k�Im GK�k,
 + ��t��k�Im GK�k,
� �5�

with t��k�= t0�cos kx−cos ky�2, GK�k ,
�= 	
−�k+�
−	K�
�
−1, and f�
� the Fermi-Dirac distribution. We used
t0=0.15 eV�0.43t �Ref. 51� in the calculation.

�3� Quasiparticle contribution to Raman-scattering inten-
sity,

����� = 2�
K
�

K

d2k

�2��2� d


�
	f�
� − f�
 + ��


 �ab Im GK�k,
 + ���ab Im GK�k,
� . �6�

Two geometries are of interest: B1g, where the matrix ele-
ment is �ab= 1

2 ��2�k /�kx
2−�2�k /�ky

2� and B2g where �ab
=�2�k /�kx�ky. The B1g geometry highlights the zone-face
�0,�� / �� ,0� regions while the B2g geometry highlights the
zone diagonals ��� /2, �� /2�. This matrix element is ap-
propriate for nonresonant Raman scattering and is the sim-
plest one which is consistent with the symmetry. In practice,
incident laser frequencies are often chosen to take advantage
of resonant enhancements arising from other degrees of free-
dom in the solid. These will change the absolute and relative
magnitudes but not the symmetries of the vertices.

�4� Quasiparticle contribution to in-plane optical conduc-
tivity,

���� = 2�
K
�

K

d2k

�2��2� d


�

f�
� − f�
 + ��
�

 vx Im GK�k,
 + ��vx Im GK�k,
� , �7�

where vx=��k /�kx. An approximate vertex correction58 was
also incorporated.

�5� Real and imaginary parts of sector-dependent electron
self-energy 	K�
�.

Here �K denotes an integral over momenta lying in sector
K. Note that for the Raman scattering and in-plane optical
conductivities �unlike for the other quantities we have con-
sidered� a vertex correction contribution �which we have
only partially calculated� is present. The full vertex correc-
tion calculation is currently in progress using methods out-
lined in our previous work58 but based on these results we
expect the low-frequency conductivity of primary interest
here to have only a small vertex correction.

III. ELECTRON SPECTRAL FUNCTION

Figure 2 shows the electron spectral function for the sec-
tor containing the �0,�� momentum �labeled C in Fig. 1�
calculated at 0.05 hole doping for several temperatures. A
pseudogap �reduction in density of states� is visible in the
low-energy region.

We define the pseudogap magnitude EPG=2�PG as the
peak-to-peak separation �for the x=0.05 case shown in Fig. 2
EPG�0.8t�0.3 eV�. The reduction in density of states is
largest at the lowest temperature and for frequencies near

=0. It appears that at this doping, the low-frequency den-
sity of states vanishes as T→0. As temperature is raised, the
gap fills in: the density of states inside the gap increases but
the gap magnitude does not change appreciably. For tem-
peratures greater than about 0.2t the gap is no longer visible
at this doping.

The upper panel of Fig. 3 shows the �0,��-sector spectral
function calculated at several different dopings. A decrease
in gap magnitude with increasing doping is evident. For dop-
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FIG. 2. �Color online� Many-body density of states A�
�
=− 1

� Im G�
� averaged over sector C containing the �0,�� point,
calculated using eight-site DCA approximation at hole doping x
=0.05 with U=7t and inverse temperatures �=1 /T indicated.
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ings larger than x=0.11, a gap is not visible at the tempera-
tures T� t /20 accessible to us although a weak feature in the
x=0.13 curve suggests that the gap is still present. However,
certainly at x=0.11 and perhaps at x=0.13 the gap magnitude
�as defined by the peak-to-peak distance in the spectral func-
tion� is not small. We therefore suspect that at least a reduc-
tion in density of states would be observed at higher dopings
if we were able to perform the calculations at lower tempera-
tures.

The lower panel of Fig. 3 shows the �� /2,� /2�-sector
spectral function at the same dopings. At the smallest doping,
a weak suppression of low-frequency density of states is evi-
dent but for most dopings this sector remains ungapped.

IV. INTERPLANE CONDUCTIVITY

An important early indication of the presence of a charge
pseudogap was provided by measurements of the frequency
dependence of the interplane conductivity.6 As can be seen
from Eq. �5�, in high-Tc materials the matrix elements rel-
evant to the interplane conductivity highlight the zone-face
regions where the electron spectral function exhibits a gap
�see upper panel in Fig. 3�.

Figure 4 shows the calculated temperature and doping de-
pendence of the interplane conductivity. The pseudogap is
visible as a temperature- and doping-dependent suppression
of the low-frequency interplane conductivity. The interplane
conductivity is suppressed over a relatively wide frequency
range; the suppression increases as the doping or temperature
decreases, and the gap fills in but does not close as tempera-
ture is increased. The calculations also reveal a weak maxi-
mum in the conductivity at an energy just above the
pseudogap. A somewhat broader version of this feature was
observed by Yu et al.59 It is possible that the relative sharp-
ness of the feature is an artifact related to our coarse graining
of momentum space, which might arise because the DCA
approximation necessarily produces a gap that is piecewise
continuous; and as is known from the familiar case of s-wave
BCS superconductivity a momentum-independent gap pro-
duces a peak. The results are reasonably consistent with
experiment.6,7,12,59 Reference 59 reports a high-energy
pseudogap of a magnitude consistent with what is found
here. It is important to note that in the widely studied
YBa2Cu3O6+x material, the interplay of strong local-field ef-
fects �arising from the bilayer structure� and phonon effects
produce complicated structures in the low-frequency conduc-
tivity which are not represented in the present
calculation.59–61

Conductivities may be characterized by “spectral weight,”
the integrated area in some frequency range. The total spec-
tral weight obeys an “f-sum” rule, which for the model stud-
ied here is

�
0

� 2d


�
�c�
� = 2�

K
�

K

d2k

�2��2�
−�

�


d


�
f�
�t�

2 �k�Im	G2�k,
�
 . �8�
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FIG. 3. �Color online� Many-body density of states A�
�
=− 1

� Im G�
� averaged over sector C containing the �0,�� point
�upper panel� and sector B containing the �� /2,� /2� point �lower
panel�, calculated using the eight-site DCA approximation at hole
dopings indicated with U=7t and inverse temperature �=20 / t
�200 K.
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FIG. 4. �Color online� Upper panel: temperature dependence of
interplane conductivity �c��� calculated from Eq. �5� for hole dop-
ing x=0.05 at inverse temperatures �=1 /T indicated. Lower panel
�note change of vertical scale�: doping dependence of interplane
conductivity calculated at inverse temperature �=20 / t�200 K. At
hole doping x=0.16, the low-frequency interplane conductivity is
found to be approximately of Lorentzian form with dc value 0.65.
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We have verified that the spectral weight obtained from in-
tegration of the conductivity equals the spectral weight ob-
tained from an evaluation of Eq. �8�. The curves shown in
Fig. 4 imply a temperature- and doping-dependent decrease
in low-frequency spectral weight. We find that in the lower
doping regions where the pseudogap is present, the spectral
weight which is lost at low frequencies due to the formation
of the gap is not fully restored at higher frequencies; thus the
conductivity spectral weight decreases as the temperature or
doping is decreased whereas at higher doping, the c-axis
conductivity spectral weight increases as temperature is de-
creased. The calculated interplane conductivity is spread
over a wide frequency range so the pseudogap-induced de-
crease in spectral weight is small relative to the total weight.
The doping and temperature dependence of the c-axis spec-
tral weight is given in Table I.

Reference 48 reports interplane conductivity results ob-
tained using a two-site cluster, a particular choice of self-
energy periodization and a Padé continuation to compute �c
for U / t=10 and t� / t=−0.3. The results are very similar to
those shown here but with slightly larger gaps and a much
greater suppression of �c at sub gap frequencies. Note that a
factor of �t0

2 / �8t2� is required to convert the results of Ref.
48 to our units.

To conclude this section, we note that the pseudogap ef-
fects are enhanced by the structure of the matrix element
�which is the one widely used in the theoretical literature�
which enhances the contribution of sector C relative to sector
B. If a k-independent matrix element was used, the
pseudogap effects would be much less pronounced.

V. RAMAN-SCATTERING INTENSITY

Raman scattering has provided important information
about the cuprates.62 It is a photon-in/photon-out process,
and the polarizations of the electric field vectors of the inci-
dent and emitted photons may be adjusted to highlight tran-
sitions in different regions of momentum space. We consider
here two scattering geometries: B1g which highlights the an-
tinodal region and B2g where the matrix element highlights
the nodal region. The computation of the Raman intensity
involves a vertex correction, which we have not computed
�note that unlike the case of the in-plane conductivity58 the
vertex correction does not involve a contribution from the
momentum-space discontinuity of the self-energy�. Thus
what is shown is the quasiparticle contribution only. For this
reason, and also because we do not have control over the

high-frequency part of the spectrum, we do not undertake the
sum-rule analysis introduced by de Medici et al.63 in their
single-site DMFT study of the Raman intensity in the strong
correlation limit.

Figure 5 shows the temperature dependence of the calcu-
lated Raman spectra in the two scattering geometries at the
low doping x=0.05 �upper panels� and high doping x=0.16
�lower panels�. We see that at the higher dopings, the func-
tional forms and temperature dependencies in the two scat-
tering channels are similar while at the lower doping they are
rather different. At the higher doping, the Raman response in
each channel rises linearly to a weak maximum and then
approximately saturates; the initial slope increases as T de-
creases in both channels. It is also interesting to note that the
calculation reproduces the roughly frequency-independent
high-frequency behavior, which had previously been argued
to be evidence for novel “marginal Fermi-liquid” physics not
contained in the Hubbard model.64 However, at the lower
dopings the low-frequency B1g response is progressively sup-
pressed as T decreases whereas the B2g response has negli-
gible T dependence.

The key features of the results presented in Fig. 5, namely,
an increase with increasing doping in the temperature depen-
dence of the low-frequency B2g scattering intensity and a
change in sign of the T dependence for the B1g intensity

TABLE I. Integrated spectral weight of interplane optical con-
ductivity obtained from Eq. �8� at different temperatures for several
hole dopings.

x �t=10 �t=15 �t=20

0.05 0.111 0.105 0.102

0.07 0.125 0.119 0.116

0.08 0.142 0.138 0.134

0.16 0.207 0.223 0.231
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FIG. 5. �Color online� Temperature dependence of Raman-
scattering intensity ����� calculated from Eq. �6� for B1g and B2g

scattering channels in eight-site DCA at hole doping 0.05 �upper
panels� and 0.16 �lower panels� and U=7t.
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along with the presence of a weak maximum at an energy
which decreases with increasing doping are qualitatively
consistent with data �see, e.g., Figs. 42 and 43 of Ref. 62�.

However, there are important quantitative differences.
The calculated ratio of B1g to B2g is approximately 15
whereas the experimental ratio is much closer to 1. This
difference presumably arises because the experiments em-
ploy a resonantly enhanced matrix element. More impor-
tantly, the calculation places the maximum �or scale at which
the response saturates� at a higher energy than the data in
Refs. 62 and 65. For example, at x=0.16 the calculated satu-
ration point for the B1g spectra �using t=0.35 eV and placing
the saturation maxima at 0.33t� at �t=20 is 
�925 cm−1

while in the B2g spectra our results saturate at �700 cm−1

�placing the saturation point at 0.25t� whereas the experi-
mental data have not quite saturated. Further, observed B2g
Raman spectra at low dopings have more T dependence than
is found in our calculations. The onset coincides in tempera-
ture with other measures of the pseudogap so we associate
the phenomenon to the pseudogap.

Figures 6 and 7 show the doping dependence of the Ra-
man intensity at inverse temperature �t=20 corresponding to
T�200 K. A strong increase in initial slope is evident in
both channels. The rapid steepening of the initial slope in the

B2g channel is a consequence of the emergence of coherent
quasiparticles in the zone-diagonal sector �see Sec. VII�. The
change in the B1g channel arises from the doping dependence
of the pseudogap. The calculated behavior of the Raman in-
tensity, including the difference in doping and temperature
dependence between the two sectors and in particular the
doping-dependent suppression of the B1g Raman spectra over
a wide frequency range, is in reasonable agreement with
measurements.62,66–68 However, our calculated B2g spectra
exhibit a strong doping dependence which is not observed in
recent experiments.65

VI. IN-PLANE CONDUCTIVITY

The optical conductivity ���� of the high-Tc cuprates has
been an enduring mystery. The salient features of the data are
a “Drude” peak centered at zero frequency, with a strongly
temperature-dependent spectral weight and half width, and a
broad higher-frequency continuum.11,12,69 The strong doping
dependence of the Drude peak has been taken as evidence of
strong “Mott” correlations while the broad higher-frequency
continuum has been interpreted in terms of scattering from
spin fluctuations.64,70–72

The computation of the in-plane conductivity involves a
vertex correction58 which has not been fully calculated. Here
we only include the vertex correction arising from the self-
energy discontinuities in momentum space while the contri-
bution of additional dependence of the self-energy on the
vector potential A� which arises from the change in mean-
field function is neglected.

The main panel of Fig. 8 presents the calculated doping
dependence of the real part of the in-plane conductivity. Our
results exhibit strong similarities to experimental data, in-
cluding, at low frequencies, a growth of the Drude peak with
doping, and a weakly frequency and doping-dependent “mid-
infrared” conductivity with a magnitude comparable to the
measured value �5–700 �−1 cm−1 �note that to convert to
the unit of �−1 cm−1 commonly used in experiments, our
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results have to be multiplied by a factor of about 5103�.
The inset shows that at higher dopings, the Drude peak
grows noticeably and sharpens slightly as temperature is de-
creased.

A particularly interesting issue is the lack of a clear-cut
effect of the pseudogap on the conductivity. A natural con-
jecture is that the conductivity is dominated by states near
the zone diagonal, which are not sensitive to the pseudogap.
Figure 9 presents a decomposition of the contributions of the
different sectors to the measured conductivity which sup-
ports this conjecture. A pseudogap �the feature at 
� t� is
present in the contribution of sector C but the contribution of
this sector to the measured conductivity is relatively small,
so the feature is not evident in the full conductivity. The
pseudogap feature is more pronounced in four-site cluster
calculations58,73,74 because the geometry of the four-site clus-
ter is such that the low-frequency behavior is dominated by
the �0,�� / �� ,0� sectors so that it does not capture the phys-
ics of the nodal quasiparticles. In the present eight-site cal-
culation, the nodal quasiparticle physics is represented by
sector B, which is seen to give the dominant contribution to
the conductivity.

The doping11,57,69,75 and temperature76,77 dependence of
the optical spectral weight K=� 2d


� ��
� has been the subject
of discussion in the literature. One ambiguity is the range
over which the conductivity is to be integrated: setting the
range too high leads to the inclusion of interband transitions
which are believed to be irrelevant to the physics of high-Tc
materials while setting the range too low may mean that
changes in the width of a low-frequency peak may be mis-
taken for changes in area. Recent papers suggest that an up-
per cutoff of �1 eV is a reasonable compromise value.77,78

A marked increase in spectral weight occurs as doping is
increased �see Ref. 57 for a summary of the data�. The ex-
perimental consensus is that at all dopings, the spectral
weight increases weakly as temperature is decreased, and
that the temperature dependence changes markedly as the
temperature is decreased below the superconducting transi-
tion temperature. The doping dependence of the calculated
spectral weight over the range ��3t�1 eV �shown in
Table II� is reasonably consistent with the data although we

find that at lower dopings x=0.08,0.05 the temperature de-
pendence flattens. A weak temperature dependence is seen in
the spectral weights integrated up to 3t�1 eV. The sign of
the temperature dependence changes with doping: increasing
as T is decreased at high doping and decreasing as T de-
creases at low doping. It is tempting to relate this change in
temperature dependence to a change in physics from Fermi-
liquidlike at high doping to pseudogapped at low doping but
the small magnitude of the effect and the possibility of
temperature-dependent changes in the functional form of the
conductivity make an interpretation unclear. Calculations of
a four-site cluster approximation to the t-J model77 �which is
believed to reflect the low-energy physics of the Hubbard
model for U�12t, larger than what we studied here� found a
similar doping and temperature dependence.

The conductivity is sometimes expressed in terms of a
frequency-dependent optical scattering rate �opt related to the
complex conductivity �̃=�1�
�+ i�2�
� via

�opt = K Re
1

�̃
, �9�

where �1 is calculated from Eq. �7� and �2 is obtained by the
Kramers-Kronig transformation of �1. In underdoped cu-
prates at high temperature, �opt is large and temperature de-
pendent over a wide frequency range. As the temperature is
decreased to the pseudogap scale, the high-frequency part
loses its temperature dependence while at lower frequencies,
a temperature-dependent suppression of �opt appears.79

Figure 10 shows that this behavior is also found in our cal-
culations.

VII. ELECTRON SELF-ENERGY

Figures 11 and 12 compare the temperature dependence of
the imaginary part of the electron self-energy computed at
doping x=0.08 and x=0.16 for the two momentum sectors
containing the Fermi surface. At doping x=0.08 �see Fig.
11�, we see that the �0,�� sector self-energy is characterized
by a pole located near 
=0 whereas no pole appears in the
self-energy of the sector containing the zone-diagonal part. A
near zero-energy pole in the self-energy is a characteristic of
a Mott insulating state, confirming that the gap opening tran-
sition is indeed a sector-selective Mott transition. As the tem-
perature is decreased, the pole grows in strength. The pole
position at 
�0 leads to the approximate particle-hole sym-
metry of the spectra. We also observe that at this doping the

TABLE II. Integrated spectral weight of in-plane optical con-
ductivity obtained by integrating calculated curves multiplied by a
factor of 2 /� up to �=3t�1 eV at different temperatures for sev-
eral hole dopings.

x �t=10 �t=15 �t=20

0.05 0.252 0.244 0.240

0.08 0.3141 0.3145 0.313

0.11 0.328 0.343 0.345

0.16 0.383 0.390 0.392
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FIG. 9. �Color online� Contribution of different momentum sec-
tors to calculated in-plane optical conductivity for U=7t at doping
x=0.05 and inverse temperature �=20 / t�200 K.
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sector B �zone-diagonal� self-energy has only a weak tem-
perature dependence at the temperatures accessible to us.

At doping x=0.16 �see Fig. 12�, the self-energies in both
sectors decrease with temperature and have a minimum cen-
tered at 
�0. In sector B, the self-energy has Fermi-
liquidlike behavior which decreases rapidly and roughly lin-
ear in T. In sector C, the self-energy decreases more slowly.

The difference in magnitude and doping dependence indi-
cates that this doping regime is characterized by a large
variation in scattering rate around the Fermi surface.

Figure 13 shows the doping dependence of the imaginary
part of the sector C self-energy. A pole, gaining in strength as
doping is decreased and centered at approximately zero fre-
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quency, is clearly visible for x�0.11, while for x=0.13 and
0.16 there is no pole, only a weak modulation indicating a
non-Fermi-liquid scattering rate. Whether this modulation
would evolve into a pole as T→0 is an interesting open
question. Liebsch et al.44 analyzed the self-energy pole struc-
ture in the �0,�� sector of a four-site cellular dynamical
mean-field �C-DMFT� calculation, finding a similar doping
dependence of the pole strength. They reported a strong de-
pendence of the pole position on doping; this variation is not
found in the eight-site cluster studied here.

An alternative characterization of electronic behavior is

the quasiparticle residue Z= 	1−� � Re 	�
�
�
 �
=0
−1. Because

within each sector, the self-energy is momentum indepen-
dent, Z gives the renormalization of the Fermi velocity as

v�=Zv. This renormalization has physical significance if the
self-energy is Fermi-liquidlike, meaning that the imaginary
part is not too large and the real part is linear in frequency
over a reasonable range about 
=0. We determine the
boundaries of the Fermi-liquid regime by first observing that
the real part of the self-energy Re 	 is linear in frequency
over the range −
L�
�
H �see Appendix A, Fig. 16�, and
then comparing the magnitude of the imaginary part of
the self-energy at zero frequency to the change of 

− 	Re 	�
�−Re 	�0�
 over the linear range. If the change
	
H−Re 	�
H�
− 	
L−Re 	�
L�
 is larger than −2 Im 	�

=0� we identify the regime as Fermi-liquidlike. For an illus-
tration of the determination of Fermi-liquid behavior, see
Appendix A.

This condition is reasonably well satisfied for sector B for
dopings x�0.08 �and marginally satisfied for x=0.08�. Simi-
larly sector C is found to be Fermi-liquidlike for dopings x
=0.18 and greater but for x=0.06, the self-energy in both
sectors is far from Fermi-liquidlike and the quantity Z cannot
be interpreted as a “quasiparticle weight.”

The solid points in the upper panel of Fig. 14 show the
value of Z for the sector B containing the zone-diagonal
point �� /2,� /2� and the sector C containing the zone-face
point �0,�� for dopings for which the sectors are Fermi-
liquidlike. The open symbols show the mathematically de-
fined values of Z in the regime where it has no physical
meaning because the regime is not Fermi-liquidlike. For dop-
ings in the Fermi-liquid regime, the Z in sector B is linear in
x but extrapolates to a small nonzero value at x=0. This is
approximately but not exactly the behavior Z�x expected in
a doped Mott insulator. The lower panel of Fig. 14 shows
that the doping dependence of the low-frequency optical
conductivity weight is essentially the same as that of the
nodal-sector Z.

VIII. SUMMARY

In the eight-site DCA approximation to the solution of the
two-dimensional Hubbard model, the doping-driven Mott
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transition occurs in an orbitally selective manner. As doping
is reduced a pseudogap opens in the region of momentum
space centered at �0,�� 	and �� ,0�
 while the sector contain-
ing the zone-diagonal remains ungapped down to much
lower dopings. In this paper, we have explored some of the
implications of this pseudogap for observables. We find that
the gap is apparently tied to the Fermi level, fills in rather
than closes with increasing temperature, and produces many
of the qualitative features observed in experiment.

Figure 15 plots the doping dependence of the pseudogap
magnitude as defined from the peak-to-peak separation in the
electron spectral function. As is seen in experiment,80 the
pseudogap magnitude is approximately linear in doping. The
extrapolation to x=0 �see Fig. 15� gives limx→02�PG�x�
=1.1t rather smaller than the x=0 sector C gap �2.6t char-
acteristic of the half-filled insulator. The pseudogap is thus a
new phenomenon, not a remnant of the gap occurring at half
filling.

For x�0.11, a gap is not visible in our calculated spectral
functions; however, the linear extrapolation of the points in
Fig. 15 indicates that for U=7t studied here the critical value
at which the gap would close is x�0.17. One possible infer-
ence is that the temperatures T� t /20 accessible to us are too
high to enable the gap to be seen, and that calculations at
lower temperatures would reveal a gap in the range 0.11
�x�0.17. Indeed, in experiment pseudogap effects are vis-
ible at dopings �0.11 but only at temperatures �200 K
�see, e.g., Ref. 13, Fig. 63 or Ref. 59�, i.e., less than the
lowest temperature accessed in this study. Extending our re-
sults to lower temperatures is therefore of interest. It is also
interesting to note that this larger doping is comparable with
the value x=0.15 at which a quantum critical point was re-
ported from analysis of the electron lifetime in a model with
U=6t.81

Figure 15 should however be interpreted with caution. At
low dopings �see, e.g., the x=0.05 results in Fig. 2� the
low-T limit of the spectral function exhibits a clear gap �re-
gion of vanishing density of states� and the peak-to-peak
distance plotted in Fig. 15 corresponds well to the gap edge.
As doping is increased the gap fills in and it is less clear
whether as T→0 the density of states would develop a true
gap, or whether for x�0.1 the peaks represent the boundary
of a region with reduced but nonvanishing density of states.
If the second possibility occurs then x�0.1 is a critical dop-
ing separating a low doping region where sector C is gapped
from an intermediate region where sector C has a nonzero
but possibly suppressed Fermi-level density of states. This
latter possibility is suggested by the imaginary-axis analysis
of previous papers49,50 which defined the critical doping for
the orbital selective transition in terms of the chemical po-
tential at which carriers were first added to sector C. This
chemical-potential value implies a critical x�0.1.

A closely related question concerns the possible formation
of Fermi arcs. A natural interpretation of the results is that as
doping is decreased the pseudogap first forms at
�0,�� / �� ,0� and with further decrease in doping an increas-
ing portion of the Fermi surface is gapped, leaving a “Fermi
arc” whose width is doping dependent. In this interpretation,
the sector B finding of a scattering rate which becomes large
as doping is decreased would represent an average over a
region �increasing as doping is decreased� where the Fermi
surface is gapped and a Fermi-arc region �decreasing as dop-
ing is decreased� with good quasiparticles. Analysis of this
possibility requires a finer momentum resolution than is
presently available to us.

While differences remain on the quantitative level be-
tween calculation and experiment and indeed between calcu-
lations performed on different clusters, the results indicate
clearly that the Hubbard model at intermediate correlations
and low dopings does exhibit a pseudogap with many of the
features exhibited by the experimentally defined high-energy
pseudogap. A transition to a phase with long-ranged order is
not necessary to produce the effect. The calculation does not
reproduce many of the lower-energy anomalies which may
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be associated with onset of significant superconducting,
nematic, or orbital current order, perhaps because these are
long-wavelength effects beyond the scale provided by the
cluster sizes or because they involve physics beyond the one-
band model we are presently able to study.
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APPENDIX A: DETERMINATION OF FERMI-LIQUID
REGIME

In this appendix, we provide details of the analysis we use
to determine whether the system is in a Fermi-liquid regime.
Representative results for Re 	�
� and Im 	�
� are shown
in Fig. 16. In a Fermi liquid, the real part of the self-energy
is linear in frequency �at low frequency�, and the imaginary
part is not too big. To formulate a quantitative criterion, we
first determine the range around 
=0 over which Re 	�
� is
linear. This range is bounded at the lower end by a frequency

L and at the higher end by 
H. For the x=0.13 data we have

L=−0.08, 
H=0.08, for x=0.08 we have 
L=−0.08, 
H
=0.02. Then we compute the change in quasiparticle energy
	
H−	�
H�
− 	
L−	�
L�
 �finding 0.56596 for x=0.13 and
0.42048 for x=0.08�. Finally we compare the result to
−2 Im 	�
=0� which changes considerably between dop-
ings. From this comparison we see that sector B at x=0.13 is
well within the Fermi-liquid region while x=0.08 is on the
border.

APPENDIX B: REAL PART OF SELF-ENERGIES

For completeness we show in this appendix the self-
energies not discussed in the text. Figure 17 presents the
imaginary part of the self-energy in sector B containing the
��� /2, �� /2� point. The real parts of the self-energies in
sector B and sector C over an intermediate frequency range
are shown in Fig. 18.
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